当前位置:首页 > 软件开放 > 正文内容

dede回到列表页的代码(debug怎么返回到上一级)

软件开放9个月前 (05-01)330

装饰物指的是你可以添加到一个图形上的所有额外元素,以美化它或使它更清晰。装饰物包括图例、注释、颜色条、文本等标准元素,但也可以专门设计自己的元素。上篇Matplotlib 可视化之注释与文本高级应用一文中,已经接触了注释与文本的应用实例,今天和云朵君一起继续学习图例与标签元素的应用实例。

配置图例

想在可视化图形中使用图例,可以为不同的图形元素分配标签。

图例非常容易使用,只要求用户命名图。Matplotlib将自动创建一个包含每个图形元素的图例。即使在大多数情况下,一个简单的legend() 调用就足够了,但图例还是提供了几个选项,允许我们自定义图例的各个配置。如使用

ax.legend(loc='upper left',

frameon=False,

edgecolor="None")

完整代码解析

fig = plt.figure(figsize=(9.6, 4))

ax = plt.subplot(

xlim=[-np.pi, np.pi],

xticks=[-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],

xticklabels=["$-\pi$", "$-\pi/2$", "0", "$+\pi/2$", "$+\pi$"],

ylim=[-1, 1],

yticks=[-1, 0, 1],

yticklabels=["-1", "0", "+1"],

)

X = np.linspace(-np.pi, np.pi, 256, endpoint=True)

C, S = np.cos(X), np.sin(X)

# 绘制两条折线,颜色默认

ax.plot(X, C, label="$cos(x)$", clip_on=False)

ax.plot(X, S, label="$sin(x)$", clip_on=False)

# 隐藏上右边的轴线

ax.spines["right"].set_visible(False)

ax.spines["top"].set_visible(False)

# 移动下左边的轴线

ax.spines["left"].set_position(("data", -3.25))

ax.spines["bottom"].set_position(("data", -1.25))

ax.legend(edgecolor="None",loc=2,frameon=False)

然而,在某些情况下,用图例来添加信息可能不是最合适的方式。例如,当你有多个图表时,读者在阅读图表,视线在图表和图例之间来回切换时,可能会觉得很乏味。另一种可以解决此类困惑的方法是在下图所示的图上直接添加信息。

详细代码解析

X = np.linspace(-np.pi, np.pi, 400, endpoint=True)

C, S = np.cos(X), np.sin(X)

plot1, plot2 = plot(ax) # 绘制折线图的对象

# --------------------P1-------------------------

# 用小横线标注在折线旁边

ax.text(

X[-1], C[-1],

" — " + plot1.get_label(), # 从对象中获取标签

color=plot1.get_color(), # 从对象中获取线条颜色

size="small", ha="left", va="center",)

# --------------------P2--------------------------

# 标注在对应折线上,且有透明边框

ax.text(

X[100], C[100],

" " + plot1.get_label(),

bbox=dict(facecolor="white", edgecolor="None", alpha=0.85),

color=plot1.get_color(),

ha="center", va="center", size="small",

rotation=42.5,)

# --------------------P3--------------------------

# 使用箭头

ax.annotate(

"$cos(x)$",

(X[100], C[100]),

size="medium",

color=plot1.get_color(),

xytext=(-50, +10),

textcoords="offset points",

arrowprops=dict(

arrowstyle="-", color=plot1.get_color(),

connectionstyle="arc3,rad=-0.3"),)

# --------------------P4--------------------------

# 圈点和注释的组合

index = 10

ax.scatter(

[X[index]], [C[index]],

s=100, marker="o", zorder=10,

edgecolor=plot1.get_color(),

facecolor="white", linewidth=1, clip_on=False,)

ax.text(

X[index], 1.01 * C[index],

"A",

zorder=20,size="small",

color=plot1.get_color(),

ha="center", va="center", clip_on=False,)

当然,这里是没有最好的选择,因为它真的取决于数据。对于上述的sin / cos的示例(非常简单),这四种解决方案都是合适的,但当有很多实际数据一起使用时,可能这种方法就失效了。此时我们可能需要寻求其他方式来标记数据,如将图分成几个图分别展示。

dede回到列表页的代码(debug怎么返回到上一级)

展开全文

标题和标签

我们已经使用 set_title、set_xlabel 和 set_ylabel 方法操作了标题和标签。当仅仅使用默认参数时,确实比较方便。并且它们的默认位置通常对大多数图表都比较合适。尽管如此,仍然可以使用各种参数来定制和美化图形。

如下面两个图所示,对比观察,可以明显发现:上图大部分使用了默认参数。而下图中,用轴标签替换轴刻度标签,即在轴中间加上说明标签,为了使其更靠近轴,删除了可能与标签碰撞的中心刻度。此外,将标题其向右移动,并相应地移动图例框,将其放置在标题下方,并且使用一行两列的排列方式。其实这里没有做过复杂的操作,但我认为结果在视觉上更惊艳。

完整代码解析

ax.legend(

edgecolor="None",

ncol=2,

loc="upper right",

bbox_to_anchor=(1.01, 1.225),

# 用于与loc一起定位图例的框。(x, y, width, height)

borderaxespad=1,

# 轴线和图例边框之间的填充,以字体大小为单位。

)

# 设置标题

ax.set_title("三角函数", x=1, y=1.2, ha="right",size=14)

# 设置x轴标签

ax.set_xlabel("角度", va="center", weight="bold",size=12)

ax.xaxis.set_label_coords(0.5, -0.25)

# 设置标签的坐标。

# 默认情况下,y 标签的 x 坐标和 x 标签的 y 坐标由刻度标签边界框确定,

# 但是如果有多个轴,这可能会导致多个标签对齐不良。

# 设置y轴标签

ax.set_ylabel("值", ha="center", weight="bold",size=12)

ax.yaxis.set_label_coords(-0.025, 0.5)

在某些情况下(如会议海报),可能需要让标题更吸引眼球,如下图所示。这可以通过使用make_axes_locatable 方法来划分每个轴,并为标题区域预留15%的高度。在这个图中,还用Latex 插入了一个完全对齐的文本,它可以被看作是另一种形式或(高级)装饰。

完整代码参见latex-text-box[1]

注释

在matplotlib中,注释可能是最难处理的对象。原因是它包含的概念众多,而这些概念又具有大量的参数。此外,由于注释所涉及的文本大小是按点排列的,这无疑又是雪上加霜。此外可能需要混合使用像素、点、分数或数据单元中的绝对坐标或相对坐标。你可以这么认为,你可以对具有任何类型投影的任何轴进行注释,那么你现在应该可以理解到为什么annotate方法提供这么多参数。

上面这段话比较抽象,接下来我们一起看下具体例子。注释图形最简单的方法是在想要注释的点附近添加标签,如下图所示。图中,为了使得标签独立于数据分布保持可读性,为标签添加了一个白色的轮廓。然而,如果这样的点过多,所有不同的标签可能会使图形变得混乱,并可能会掩盖潜在的重要信息。

完整代码解析

import matplotlib.patheffects as path_effects

fig = plt.figure(figsize=(10, 5))

ax = plt.subplot(1, 2, 1, xlim=[-1, +1],

xticks=[], ylim=[-1, +1],

yticks=[], aspect=1)

# ---------------------------------------------

# 绘制散点图

np.random.seed(123)

X = np.random.normal(0, 0.35, 1000)

Y = np.random.normal(0, 0.35, 1000)

ax.scatter(X, Y, edgecolor="None", s=60,

facecolor="C1", alpha=0.5)

# 不重复采用:array([1, 4, 0, 3, 2])

I = np.random.choice(len(X), size=5,

replace=False)

# 根据y值,从大到小排序

Px, Py = X[I], Y[I]

I = np.argsort(Y[I])[::-1]

Px, Py = Px[I], Py[I]

# 将随机选取的五个点用黑色边框框选出

ax.scatter(Px, Py, edgecolor="black", facecolor="white", zorder=20)

ax.scatter(Px, Py, edgecolor="None", facecolor="C1", alpha=0.5, zorder=30)

添加标签注释

for i in range(len(I)):

# 五个注释是样式是一样的,可以使用循环添加

text = ax.annotate(

"Point " + chr(ord("A") + i),

xy=(Px[i], Py[i]),

xycoords="data",

xytext=(0, 18),

textcoords="offset points",

ha="center",

size="medium",

arrowprops=dict(

arrowstyle="-", shrinkA=0, shrinkB=5, color="black", linewidth=0.75),

)

text.set_path_effects(

[path_effects.Stroke(linewidth=2, foreground="white"), path_effects.Normal()]

)

text.arrow_patch.set_path_effects(

[path_effects.Stroke(linewidth=2, foreground="white"), path_effects.Normal()]

)

另一种方法是将标签推到图的一侧,并使用虚线来建立点和标签之间的链接,如下图所示。

但这些形状、位置、排列方式等样式的设计并不是图形自动的,为了绘制出该图形,就必须计算几乎所有的东西。

首先,为了不让线相互交叉,将目标标记的点排序:

X = np.random.normal(0, .35, 1000)

Y = np.random.normal(0, .35, 1000)

ax.scatter(X, Y, edgecolor="None",

facecolor="C1", alpha=0.5)

I = np.random.choice(len(X), size=5, replace=False)

Px, Py = X[I], Y[I]

I = np.argsort(Y[I])[::-1]

Px, Py = Px[I], Py[I]

从这些点开始,使用一个相当复杂的连接样式来注释它们:

y, dy = 0.25, 0.125

style = "arc,angleA=-0,angleB=0,armA=-100,armB=0,rad=0"

for i in range(len(I)):

text = ax2.annotate(

"Point " + chr(ord("A") + i),

xy=(Px[i], Py[i]),

xycoords="data",

xytext=(1.25, y - i * dy),

textcoords="data",

arrowprops=dict(

arrowstyle="-",

color="black",

linewidth=0.75,

shrinkA=20,

shrinkB=5,

patchA=None,

patchB=None,

connectionstyle=style,

),

)

text.arrow_patch.set_path_effects(

[path_effects.Stroke(linewidth=2, foreground="white"), path_effects.Normal()]

)

也可以使用连接补片的方式在轴外来注释的目标对象,如下图所示。

该图中,创建了几个矩形,在一些点周围显示感兴趣的区域,并创建了与相应的缩放轴的连接。注意连接开始在外面的矩形,这是一个不错的功能提供的注释:可以指定对象的性质要注释(通过提供一个patche)和matplotlib会照顾的连接边界的起源的patche。

完整代码解析

from matplotlib.gridspec import GridSpec

from matplotlib.patches import Rectangle, ConnectionPatch

# 设置画布

fig = plt.figure(figsize=(6, 5))

n = 5

gs = GridSpec(n, n + 1)

ax = plt.subplot( gs[:n, :n],

xlim=[-1, +1], xticks=[],

ylim=[-1, +1], yticks=[], aspect=1)

# 绘制散点图略(见上面代码)

dx, dy = 0.075, 0.075

for i, (x, y) in enumerate(zip(Px, Py)):

# 设置子画布

sax = plt.subplot(

gs[i, n],

xlim=[x - dx, x + dx],

xticks=[],

ylim=[y - dy, y + dy],

yticks=[],

aspect=1,)

# 在子画布上绘制散点

sax.scatter(X, Y, edgecolor="None",

facecolor="C1", alpha=0.5,s=60)

sax.scatter(Px, Py, edgecolor="black",

facecolor="None", linewidth=0.75,s=60)

# 加上注释

sax.text(

1.1, 0.5,

"Point " + chr(ord("A") + i),

rotation=90, size=8, ha="left", va="center",

transform=sax.transAxes, )

# 绘制矩形

rect = Rectangle(

(x - dx, y - dy),

2 * dx, 2 * dy,

edgecolor="black", facecolor="None",

linestyle="--", linewidth=0.75, )

ax.add_patch(rect)

# 绘制连接补丁Patch

con = ConnectionPatch(

xyA=(x, y), coordsA=ax.transData,

xyB=(0, 0.5), coordsB=sax.transAxes,

linestyle="--", linewidth=0.75, patchA=rect, arrowstyle="-", ) fig.add_artist(con)

GridSpec:指定子图将放置的网格的几何位置。需要设置网格的行数和列数。子图布局参数(例如,左,右等)可以选择性调整。

ConnectionPatch:用于在两点之间建立连接线。

参数:

xyA: 它是x-y图上也称为点A的连接线的起点。

xyB: 它是x-y图上连接线的起点,也称为点B。

coordsA: A点的坐标。

coordsB: B点的坐标。

axesA: 它是x-y图上连接轴的起点。

axesB: 它是x-y图上连接轴的终点。

arrowstyle: 用于设置连接箭头的样式。其默认类型为“-”。

arrow_transmuter: 用于忽略连接线。

connectionstyle: 它描述了posA和posB的连接方式。它可以是ConnectionStyle类的实例,也可以是connectionstyle名称的字符串,它具有可选的逗号分隔属性。

connector: 通常忽略它,并决定忽略哪个连接器。

patchA: 用于在A点添加补丁。

patchB: 用于在B点添加补丁

shrinkA: 用于在A点收缩连接器。

shrinkB: 用于在B点收缩连接器。

mutation_scale: 箭头样式的属性(例如head_length)的缩放比例值。

mutation_aspect: 变异前,矩形的高度将被该值挤压,变异框将被其倒数拉伸。

clip_on: 设置艺术家是否使用剪辑。

dpi_cor: dpi_cor当前用于linewidth-related事物和收缩因子。突变规模受此影响。

参考资料

[1]latex-text-box: https://github.com/rougier/scientific-visualization-book/blob/master/code/ornaments/latex-text-box.py

[2]Scientific Visualisation-Python Matplotlib

【声明】本文版权归原作者所有,内容为作者个人观点,转载目的在于传递更多信息,如涉及作品内容、版权等问题,可联系本站删除,谢谢。

扫描二维码推送至手机访问。

版权声明:本文由飞速云SEO网络优化推广发布,如需转载请注明出处。

本文链接:http://chlfg.com/post/110422.html

分享给朋友:

“dede回到列表页的代码(debug怎么返回到上一级)” 的相关文章

vip解析网站全民解析(VIP解析网)

vip解析网站全民解析(VIP解析网)

今天给各位分享vip解析网站全民解析的知识,其中也会对VIP解析网进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、vip视频解析,是怎么回事?怎么弄的? 2、全民解析vip视频哪个好 3、全民vip视频解析后如何下载视频 4、vip解析网站都安全...

手机搬砖游戏赚钱的手游2022(2021能搬砖赚人民币的手游)

手机搬砖游戏赚钱的手游2022(2021能搬砖赚人民币的手游)

本篇文章给大家谈谈手机搬砖游戏赚钱的手游2022,以及2021能搬砖赚人民币的手游对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、2022年4月14日最靠谱良心手游赚现金版有那些 2、赚钱手游排行榜2022 3、适合一台手机搬砖的手游 2022年4月14日最靠谱...

精灵宝可梦所有精灵的图片图鉴(精灵宝可梦精灵图鉴图片大全)

精灵宝可梦所有精灵的图片图鉴(精灵宝可梦精灵图鉴图片大全)

今天给各位分享精灵宝可梦所有精灵的图片图鉴的知识,其中也会对精灵宝可梦精灵图鉴图片大全进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、谁能告诉我神奇宝贝精灵大全图鉴,带图片、带这个精灵的简介、身高、体重及属性,谢谢了 2、宠物小精灵图鉴大全 3、宠物...

破解版网易云音乐百度网盘(网易云破解版百度云盘)

破解版网易云音乐百度网盘(网易云破解版百度云盘)

本篇文章给大家谈谈破解版网易云音乐百度网盘,以及网易云破解版百度云盘对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、网易云音乐破解版有吗?发y下呗! 2、网易云的音频怎么传到百度网盘 3、怎么下载网易云音乐和酷狗音乐的破解版 4、网易云音乐某些歌曲需要付费?网...

大话西游手游藏宝阁出售条件(大话西游手游藏宝阁交易条件)

大话西游手游藏宝阁出售条件(大话西游手游藏宝阁交易条件)

本篇文章给大家谈谈大话西游手游藏宝阁出售条件,以及大话西游手游藏宝阁交易条件对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、大话西游2藏宝阁多少级可以寄售(卖东西) 2、大话西游手游账号可以交易吗 告诉下流程? 3、大话西游手游藏宝阁异常交易保护说明 4、37...

谷歌浏览器访问外国网站的扩展(谷歌浏览器可以浏览外国网站吗)

谷歌浏览器访问外国网站的扩展(谷歌浏览器可以浏览外国网站吗)

今天给各位分享谷歌浏览器访问外国网站的扩展的知识,其中也会对谷歌浏览器可以浏览外国网站吗进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、我的是苹果,有没有什么手机浏览器或者软件是可以在手机浏览国外网页时自动翻译成中文的? 2、谷歌浏览器怎么打开inter...